

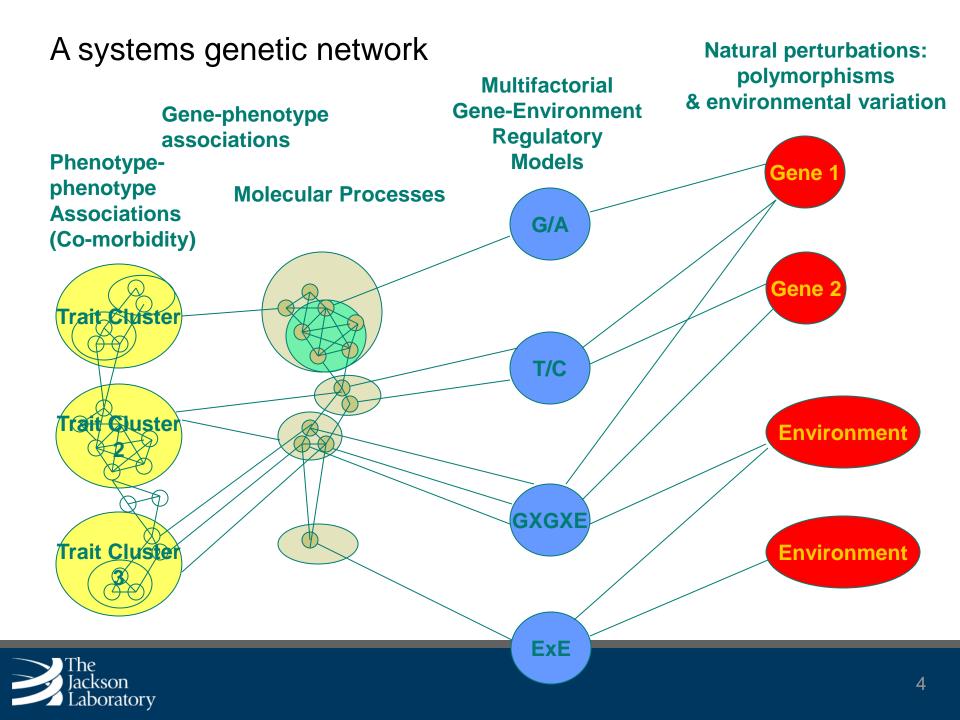
Leading the search for formorrow's cures

Systems genetics for identification of addiction-related genes using high-throughput behavioral phenotyping

Elissa J. Chesler, PhD

Systems genetics

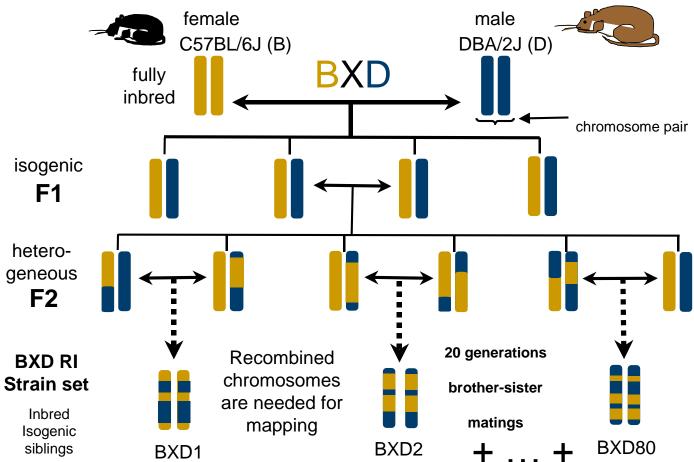
- Systems Genetics is the application of systems biology in the context of genetic variation.
- Genetic variation
 - influences variability in behavior
 - enables correlation of behaviors across individuals
 - enables correlation of behaviors to molecular mechanisms of disease
- Systems genetics enables a simultaneous genome-wide search for genetic variation and molecular mechanisms of behavior.



Systems genetics of behavior in laboratory mice

Global objectives are to:

- identify the sources of genetic variation underlying related behavioral phenotypes
- exploit variation to define categories of related and distinct behavioral traits
- classify behaviors based on associated molecular networks, rather than overt manifestations
- Together, these facilitate individualized therapeutics by finding genes that are predicted to cause behavioral heterogeneity in people.



Reference Populations Enable Integrative Systems Genetics

RI LINE	G	EN	OT	YP	ES	GE	NE I	EXPRESSION	CLASSICAL P	HENOTYPES
1	В	в	D	D	D	9.8882702	7.8823091	1 6.8766717 8.1543413 9.0514759	0 115.52478 130.04168 859.0	05468 827.4036 304.99199
2	D	в	В	В	В	6.4572105	9.4718	GENOTYPES	GENE EXPRESSION	CLASSICAL PHENOTYPES
3	В	В	D	D	D	5.9429958	7.0423			
4	D	D	В	В	D	8.481914		0		
5	D	D	D	В	В	9.220692	5.5148	Linkage Map	QTL MAPPING Expression QTLs	QTL MAPPING
6	В	D	D	D	В	8.1342232		Construction		Classical QTLs
7	D	D	D	В	D	7.8069325	12.646 S			
8	В	D	D	D	D	5.1141369	8.5804 🗖			
9	D	В	В	В	В	5.0737463	_{8.0057}			
10	В	D	D	D	D	8.195148				
11	D	В	В	D	D	7.5016105	10.385 Z	5		
12	В	D	D	D	В	7.3512233	7.2140	5		GENE EXPRESSION
13	D	В	В	В	В	9.024714	6.524 U	9 	CO-EXPRESSION	RELATIONSHIP TO
14	В	В	В	D	D	8.7960284			NETWORKS	COMPLEX
							GENF F)			PHENOTYPES
							CI ASSICAL PHENOTYPES			GENETIC CORRELATION OF COMPLEX PHENOTYPES

A Genetic Reference Population: Recombinant Inbred Strains

Behavioral Phenotyping In BXD RI mice

Baseline behaviors and effects of Morphine, Cocaine, Ethanol, Stress, MDMA

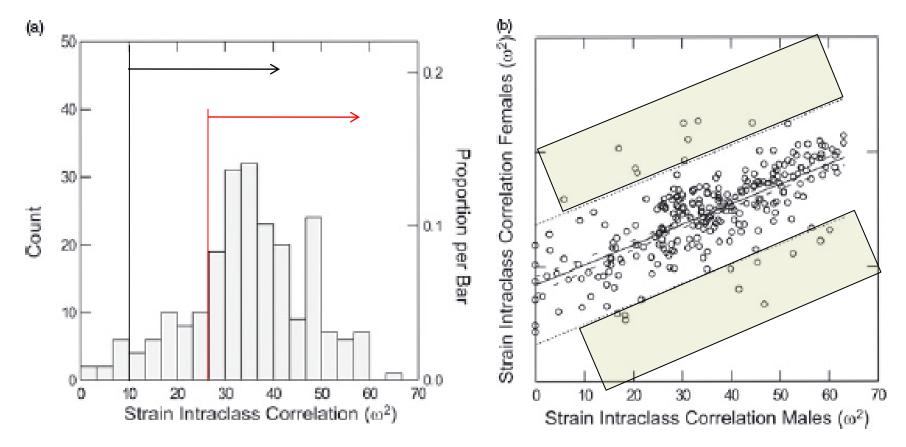
WithdrawalSelf-administrationActivityAnxietyNeurogenesisNociceptionFear ConditioningConditioned place preferencePain sensitivitySensorimotor GatingLocomotor sensitization and activation

Philip VM, Duvvuru S, Gomero B, Ansah TA, Blaha CD, Cook MN, Hamre KM, Lariviere WR, Matthews DB, Mittleman G, Goldowitz D, Chesler EJ. High-throughput behavioral phenotyping in the expanded panel of BXD recombinant inbred strains. *Genes Brain Behav*. 2009 Sep 22.

Tennessee Mouse Genome Consortium BXD Behavioral Phenotyping Project

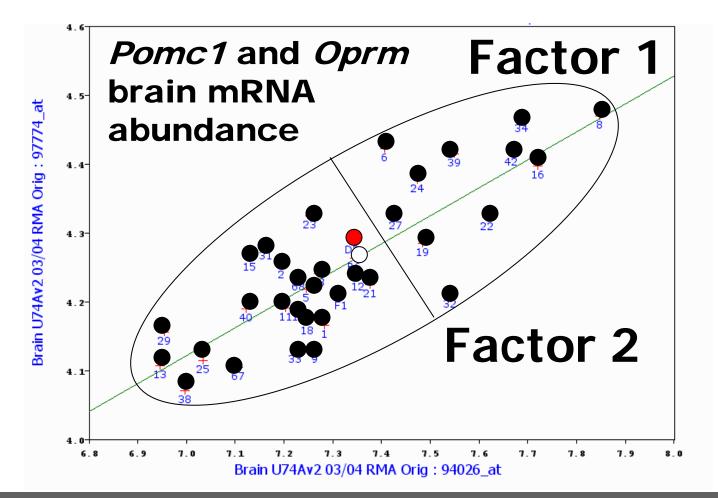
Deep replication: 10 males, 10 females per strain Broad profiling: Approximately 58 strains per phenotype

255 phenotypic measures from ~35 assays


All data are publicly available in GeneNetwork.org and Ontological Discovery.org

Complement microarray measures of gene expression in multiple brain regions

Complement decades of characterization of the BXD lines


Identifying the heritable phenotypes

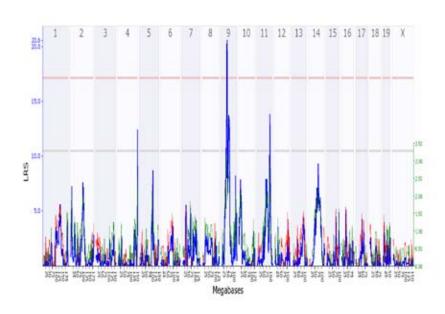
 $\overline{=}$

Genetic Correlations Reveal Co-Regulation by Genetic Factors

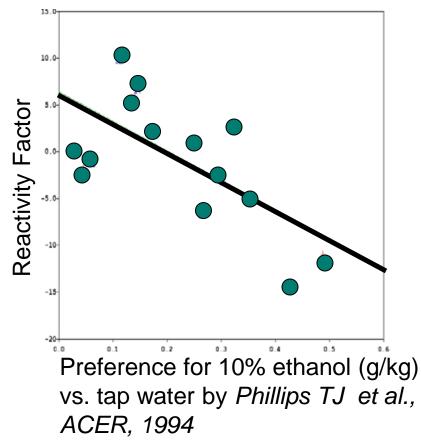
Factors underlying 255 behavioral measures obtained in 58 strains of BXD RI mice

Factor	Interpretation	Highlights:
1	Locomotor (injection stress induced)	Activity after saline or cocaine
2	Morphine Withdrawal	Salivation, urination, defecation
3	Morphine Activity	Initial response to morphine
4	Anxiety/reactivity	OFA, nociception and startle
5	Locomotor response to a novel environment	Early locomotor time
6	Activity (conflict avoidance)	Zero Maze Anxiety
7	Morphine Duration	Activity in later time points
8	Cocaine Sensitization/Activation	locomotor activity following 2nd cocaine
9	Stress	Adrenal weights, nociception
10	Vertical Activity (exploration)	Rearing, LD transitions

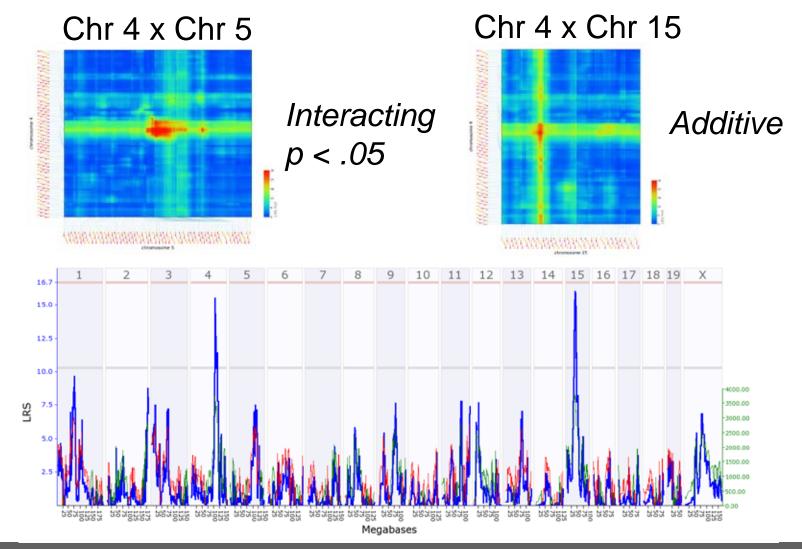
 $\overline{=}$


Multi-dimensional behavioral trait analysis

Allows analysis of the correlation between drug and alcohol self-administration to behavioral traits.

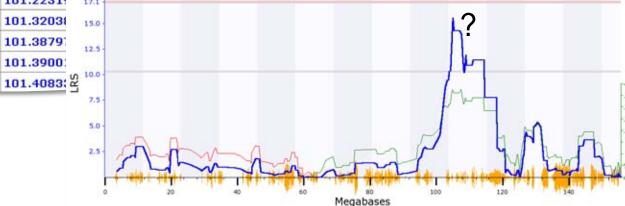


Correlating behavioral factors to alcohol preference.



QTL analysis for 'reactivity'

Finding Targets: QTL analysis of cocaine sensitization Locomotor response to 2nd dose of 10 mg/kg i. p. cocaine

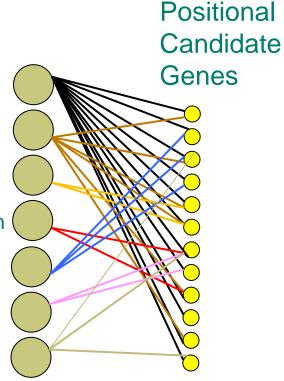

Positional candidate genes in the QTL

Interval Analyst : Chr 4 from 100.000000 to 117.000000 Mb Customize

101.3900:

GeneNetwork

	Gene Symbol	Mb Start (mm9)	Gene Length (Kb)	SNP Count	SNP Density (SNP/Kb)	Avg. Expr. Value	Class	Mb Start (hg19)	Gene Description
1	Q Ror1	99.768395	346.755	5 15	0.043258		1	63.951734	receptor tyrosine kinase-I
2	Q Ube2u	100.151471	71.279) 3	0.042088		1	64.381510	ubiquitin-conjugating enzy
3	Q Cachd1	100.449283	227.068	8 8	0.035232				cache domain containing 1
4	Q Raver2	100.741642	83.333	8 2	0.024000				ribonucleoprotein, PTB-bin
5	🔍 Jakı	100.824578	113.309) 4	0.035302		1	65.011778	Janus kinase 1
6	Q E130102H24Rik	101.0191:	Chille, Bol view (1)	e permentent metan i	f the printer is an its reparabel to	wikoma miwa			Chr 4
7	Q 0610043K17Rik	101.0263	Childs for wanter the	11111	NA WWAL	W. INA	11 41	UNE SHUL	经当时单位发生的中国发展的 医马克特氏管 医马耳耳耳氏 医弗里斯氏 化拉尔斯 使变得
8	Q Ak3l1	101.09230	1.11	11. 417	AND AND		1111	NA MA WIT	
9	🔍 Dnajc6	101.22319	17.1						
10	Q Leprot	101.3203	15.0						2
11	Q C130073F10Rik	101.3879	12.5 -						<u>D.</u>


12 Q Lepr

pp22-149D11.4

Integration of convergent data to further implicate positional candidates

Mouse Sensitization QTL Candidates

- Mouse Gene-Phenotype co-expression
- Rat Transcriptional response to Cocaine
- Drosophila gene-phenotype co-expression
- Human post-mortem gene expression
- Human GWAS
- Zebra fish knockdown

Integrative Genomics in the Ontological Discovery Environment

 Data integration across diverse genomic experiments in six species

Mus musculusRattus norvegicusHomo sapiensDrosophila melanogasterDanio rerioMacaca mulatta

- Uses combinatorial algorithms for data integration
- Designed with behavioral neuroscientists in mind.

Baker EJ, Jay JJ, Philip VM, Zhang Y, Li Z, Kirova R, Langston MA, Chesler EJ.Ontological discovery environment: a system for integrating gene-phenotype associations. Genomics. 2009 Dec;94(6):377-87.

Baker and Chesler. The importance of Open-source integrative genomics for drug discovery. CODD (2010)

Applications: Identification of high priority targets for addiction biology

- The NeuroSNP project (Saccone et al, 2009)
 - Highly connected genes are used to aid prioritization of human SNPs in homologous genes for genotyping assays
- The knock-out mouse project
 - Highly connected genes can be compared to extant mutant mouse resources and prioritized gene for mouse phenotyping
- Deep sequencing
 - Identify rare gene variants in affected populations

Conclusions

- Constructing and analyzing gene-phenotype networks enables data-driven genome-wide discovery
- The systems genetic approach facilitates understanding of the relations among behavioral phenotypes
- Systems genetics methods enable identification of both causal polymorphic genes and biomolecular processes amenable to therapeutic targeting

Acknowledgements

Graduate Students

Vivek M. Philip (U. Tennessee) Jeremy Jay (U. Maine)

Yun Zhang

(Pioneer Hi-Bred)

Zuopan Li Suman Duvurru (Glaxo Smith Kline)

Post Doc

Roumyana Kirova (Bristol-Myers Squibb)

Research Support

- BXD phenotyping
 - R01 DA020677
- ODE
 - UO1 AA13499, RO1 AA018776

Collaborators

- BXD phenotyping
 - Guy Mittleman (U. Memphis)
 - Dan Goldowitz (U. BC)
 - Kristen Hamre (U. TN HSC
 - Chuck Blaha (U. Memphis)
 - William R. Lariviere (U. Pitt)
 - Twum Ansah (Meharry Med.)

Ontological Discovery Environment

- Michael A. Langston (U. TN)
- Erich J. Baker (Baylor)
- Maryanne Martone (UCSD)
- Anita Bandrowski (UCSD)

