Omneuron

APPLICATIONS OF REAL TIME FMRI: PAIN TREATMENT AND SUBSTANCE ABUSE TREATMENT

MARCH 2007

THIS WORK SUPPORTED BY NIH:

MH067290-01

NS050642-03

Applications of Real Time fMRI Applications of Real Time fMRI - Phase II

ON DRUG AREES

DA-4-7748

Virtual Reality andVirtualReal Time fMRIReal

DA-4-7748

Virtual Reality and Real Time fMRI -Phase II

NS049673-01

Novel Methods for Functional Brain Imaging

DA021877-01A1

Measurement and Control of Patterned Brain Activation

SPECIAL THANKS FOR HELP AND GUIDANCE

Nora Volkow, NIDA Ro Nemeth, NIDA Dave Thomas, NIDA Larry Stanford, NIDA Linda Porter, NINDS

COLLABORATIVE TEAM

AFFILIATION

CHRISTOPHER DECHARMS

- -Chloe Hutton
- -Susan Landau
- -Brett Mensh
- -Kristen Lutomski
- -Saxon MacLeod
- -Debbie Scacco
- -Dave Hagewood

Omneuron

SEAN MACKEY

–Axel Lucca –Deepak Soneji

JOHN GABRIELI

- -Fumiko Maeda
- -Alison Adcock

GARY GLOVER

JOHN PAULY

STANFORD

- STANFORD
- STANFORD

STANFORD

TALK OUTLINE

OVERVIEW OF REAL TIME FMRI

LEARNED CONTROL OVER BRAIN ACTIVATION AND PAIN

RTFMRI IN CHRONIC PAIN

SUBSTANCE ABUSE - PRELIMINARY EXPERIENCES

DESCARTES VIEW OF BRAIN, AND PAIN

Mais ils peuvent aussi être portés par ce même conuit d, e, en plusieurs autres muscles. Et avant que je parrête à vous expliquer, plus exactement, en quelle

IS IT POSSIBLE TO VISUALIZE THE MECHANISMS UNDERLYING PERCEPTION IN REAL TIME?

Mais ils peuvent aussi être portés par ce même conuit d, e, en plusieurs autres muscles. Et avant que je parrête à vous expliquer, plus exactement, en quelle

CAN MRI BECOME A THERAPEUTIC MODALITY?

Diagnostic Radiology

RTFMRI AS A POTENTIAL NEW INTERFACE TO THE NERVOUS SYSTEM

+ Wires	Cochlear implant	 Restore hearing through direct stimulation of the nervous system in the profoundly deaf Potential to move on to vision as well
+ Wires	Deep brain stimulation	 Drive centers in the brain that control global functioning in order to remediate disease Currently applied in Parkinson's disease, efforts underway in others
+ Wires	EEG-based measurement	 Used in epilepsy and elsewhere EEG Neurofeedback Control of screen cursor demonstrated in people
+ Wires	Multi-electrode recording	 Control of screen cursor demonstrated in monkeys Potential to control prosthetics

RTFMRI AS A POTENTIAL NEW INTERFACE TO THE NERVOUS SYSTEM

Arrow and a second	+ Wires	Cochlear implant	 Restore hearing through direct stimulation of the nervous system in the profoundly deaf Potential to move on to vision as well
-	+ Wires	Deep brain stimulation	 Drive centers in the brain that control global functioning in order to remediate disease Currently applied in Parkinson's disease, efforts underway in others
-	+ Wires	EEG-based measurement	 Used in epilepsy and elsewhere Used in anesthesia monitoring Control of screen cursor demonstrated in people
- total	+ Wires	Multi-electrode recording	 Control of screen cursor demonstrated in monkeys Potential to control prosthetics
-	+ Photons	Neuroimaging/Cognitive	 Non-Invasive No tissue damage Reasonable localization

fMRI: IMAGES OF PHYSIOLOGY – FUNCTION

~2s

Same Spatial Slice Followed Through TIME

. 10 min of data collection

fMRI FUNCTIONAL IMAGES ARE DERRIVED FROM DEVIATIONS IN LOW-RESOLUTION ANATOMICAL IMAGES

fMRI FUNCTIONAL IMAGES ARE DERRIVED FROM DEVIATIONS IN LOW-RESOLUTION ANATOMICAL IMAGES

fMRI FUNCTIONAL IMAGES ARE DERRIVED FROM DEVIATIONS IN LOW-RESOLUTION ANATOMICAL IMAGES

OVERVIEW OF METHOD

RTFMRI SETUP

RTFMRI-BASED TRAINING – A MORE PRECISE, ANATAMICALLY TARGETED MEASURE THAN TRADITIONAL AUTONOMIC 'BIOFEEDBACK'

60's

AUTONOMIC FUNCTION Heart Rate Breath Rate Skin Conductance Skin Temperature

MEASURES

CONSEQUENCES

Predominantly measures of global arousal.

Most useful if you want to teach relaxation

RTFMRI-BASED TRAINING – A MORE PRECISE, ANATAMICALLY TARGETED MEASURE THAN TRADITIONAL AUTONOMIC 'BIOFEEDBACK'

60's

MEASURES

AUTONOMIC FUNCTION Heart Rate Breath Rate Skin Conductance Skin Temperature

CONSEQUENCES

Predominantly measures of global arousal.

Most useful if you want to teach relaxation

TODAY BRAIN FUNCTION Can measure the very specific

neurophysiological functions associated with the >100 individual brain areas.

Can measure patterns of activation evolving across multiple brain areas.

Potential to train subjects to produce very specific neurophysiological effects.

CHALLENGES WITH fMRI AS A MEASURE OF BRAIN FUNCTION

		PROBLEM	POTENTIAL RESOLUTION
Males	TIMESCALE	Neural activation is on a msec timescale, diseases lead to long-term changes in brain function. fMRI signals evolve over a few seconds.	Cognitive processing is closer to the seconds timescale. We'll use better temporal methods as soon as they come along.
	SPATIAL SCALE	There may be $\sim 10^7$ neurons in the areas that fMRI is measuring – that's no way to measure the code.	It may not be necessary to control individual neurons to achieve important applications: eg drugs, deep brain stimulation.
europhysiologist eaction"	\$\$	Isn't MRI way too expensive to really be practical?	Patient care costs can easily run into \$100k/yr/patient for many CNS diseases. Invasive CNS procedures can easily cost this much for a single procedure.

6

"N

CHALLENGES WITH FMRI AS A MEASURE OF BRAIN FUNCTION

PROBLEM

- TIMESCALENeural activation is on a
msec timescale, diseasesCognitive pro
seconds time
temporal met
come along.
signals evolve over a few
seconds.
 - SPATIAL
SCALEThere may be ~107 neurons
in the areas that fMRI is
measuring that's no way
to measure the code.
 - Isn't MRI way too expensive to really be practical?

POTENTIAL RESOLUTION

Cognitive processing is closer to the seconds timescale. We'll use better temporal methods as soon as they come along.

It may not be necessary to control individual neurons to achieve important applications: eg drugs, deep brain stimulation.

Patient care costs can easily run into \$100k/yr/patient for many CNS diseases. Invasive CNS procedures can easily cost this much for a single procedure.

\$\$

RTFMRI AND COGNITIVE TRAINING TAKE-HOME EXERCISE

POSSIBLE CREDIT	ASSIGNMENT	DUE DATE
	Produce 1% modulation in rACC activation	Next Wed

RTFMRI AND COGNITIVE TRAINING TAKE-HOME EXERCISE

POSSIBLE CREDIT	ASSIGNMENT	DUE DATE
	Produce 1% modulation in rACC activation	Next Wed
	Take control over your own reward and endorphin systems	??

RTFMRI AND COGNITIVE TRAINING TAKE-HOME EXERCISE

POSSIBLE CREDIT	ASSIGNMENT	DUE DATE
	Produce 1% modulation in rACC activation	Next Wed
	Take control over your own reward and endorphin systems	??
	Decrease pain and suffering	Future

REAL TIME FMRI TRAINING OF BRAIN FUNCTION

Learned regulation of spatially localized brain activation using real-time fMRI. NeuroImage (2004) 21, 436-443 deCharms, R. C., Christoff, K., Glover, G. H., Pauly, J. M., Whitfield, S., and Gabrieli, J. D.

IMPACT OF RTFMRI TRAINING ON BRAIN ACTIVATION

24

TIME COURSE OF TRAINING EFFECT AND CONTROLS

CAN THIS APPROACH BE USED IN CLINICALLY IMPORTANT AREAS?

TRANSLATING BASIC RESEARCH IN PAIN INTO A NEW POTENTIAL THERAPEUTIC APPLICATION AREA: NEUROIMAGING

BASIC RESEARCH

Pain can be powerfully modulated by cognitive processes including attention, placebo effect, hypnosis, and many others involving a matrix of brain regions

There are large individual differences in pain perception...

APPLIED QUESTION

CAN SUBJECTS BE TRAINED TO MORE EFFECTIVELY COGNITIVELY CONTROL PAIN?

CAN SUBJECTS SHIFT THEIR PAIN TOLERANCE OR PERCEPTION?

...and subjects with different pain sensitivities show differences in a similar group of brain regions

Pain, and brain, can be changed substantially by mechanisms of plasticity

CAN NEURAL PLASTICITY BE ANATOMICALLY TARGETED?

POTENTIAL TARGETS IN THE PAIN CONTROL SYSTEM

 _		
	$\mathbf{C}\mathbf{V}$	

CYCLE, (3 blocks, 150s total)					
Rest	Increase	Decrease			
305	Pain	Pain			

Control over brain activation and pain learned by using real-time functional MRI. **Proceedings of the National Academy of Sciences (2005)** deCharms, R. C., Maeda, F., Glover, G. H., Ludlow, D., Pauly, J. M., Soneji, D., Gabrieli, J. D., and Mackey, S. C.

BLOCK DESIGN

Control over brain activation and pain learned by using real-time functional MRI. **Proceedings of the National Academy of Sciences (2005)** deCharms, R. C., Maeda, F., Glover, G. H., Ludlow, D., Pauly, J. M., Soneji, D., Gabrieli, J. D., and Mackey, S. C.

		- CYCLE, (3 blocks, 15	ous total)	٦			
	Res	t Incre	ease	Decrease				
	<u> 30s</u>	60	s////	<u>60s</u>				
		Pain		Pain	-			
Briefing	Т`.							
Pro-Tosts		Cycle 1	Cycle 2	Cycle 3	Cycle 4	Cycle 5	After Scan	Dobriof
Anatomica	le	150s	150s	150s	150s	150s	Ratings	Deprier
Anatonnica		RUN , (5	5 cycles + ra	atings, 13min). 1-5 RUNS	per TRAIN		

ROI TARGET: rostral Anterior Cingulate Cortex

Coghill et al., PNAS, 2003

SUBJECT INSTRUCTIONS: Written text describing cognitive modulation of pain

•Attend to pain vs. attend away

•Perceive the pain as more intense vs. less intense

•Perceive the pain as harmful vs. only a tactile sensation

SUBJECT INSTRUCTIONS: Written text describing cognitive modulation of pain

•Attend to pain vs. attend away

- •Perceive the pain as more intense vs. less intense
- •Perceive the pain as harmful vs. only a tactile sensation

Coghill et al., PNAS, 20

rtfMRI-BASED TRAINING LEADS TO SPATIALLY-SPECIFIC CHANGES IN BRAIN ACTIVATION

MEASURE: Thresholded T-statistic, (INCREASE – DECREASE) _{last run} VS. (INCREASE – DECREASE) _{first run}

HEALTHY SUBJECTS LEARN INCREASED CONTROL OVER BRAIN ACTIVATION THROUGH THE COURSE OF TRAINING

(Increase Period – Decrease Period) from each pair of blocks, Averaged over N=8 Subjects

HEALTHY SUBJECTS LEARN INCREASED CONTROL OVER PAIN THROUGH THE COURSE OF TRAINING

MEASURE: Pain Intensity Rating % Difference, (Increase Period Rating – Decrease Period Rating)/Average from each pair of blocks, Averaged over N=8 Subjects

THE TIMECOURSE OF LEARNING OF CONTROL OVER BRAIN ACTIVATION MIRRORS THE TIME COURSE FOR CONTROL OVER PAIN

LEARNED CONTROL OVER BRAIN ACTIVATION IN RACC LEADS TO CORRESPONDING CHANGES IN PAIN INTENSITY RATINGS FOR A CONCURRENT THERMAL STIMULUS

FOUR CONTROL GROUPS WERE TRAINED USING SIMILAR OR IDENTICAL PROCEDURES BUT IN THE ABSENCE OF RACC RTFMRI INFORMATION

GROUP I	Received purely behavioral training for twice as long as the experimental group, but they had no rtfMRI feedback. They were additionally instructed to focus attention on the thermal stimuli during "increase" periods.	Control for effects of extended attention training
GROUP II	Received identical instructions to the experimental group, and the same period of training, but with no rtfMRI information, to test the effect of identical practice alone.	Control for identical training without rtfMRI
GROUP III	Received identical training to the experimental group, but using rtfMRI information derived from a posterior cingulate cortex region not involved in pain processing, to examine spatial and physiological specificity.	BLIND CONTROL Control for spatial and physiological specificity
GROUP IV	Received identical training to the experimental group, but unknown to them the rtfMRI displays that they saw corresponded to activation from a previously-tested experimental subject's rACC, rather than their own rACC.	BLIND CONTROL Control for cognitive effects.

THE LEARNED CONTROL OVER PAIN REQUIRES SPATIALLY-SPECIFIC RTFMRI INFORMATION

THE LEARNED CONTROL OVER PAIN REQUIRES SPATIALLY-SPECIFIC RTFMRI INFORMATION

THE LEARNED CONTROL OVER PAIN REQUIRES SPATIALLY-SPECIFIC RTFMRI INFORMATION

CAN THE PICTURES OF YOUR HEAD PROVIDE RELIEF?

RTFMRI TRAINING PROTOCOL IN PAIN PATIENTS

SUBJECT INSTRUCTIONS: Written text describing cognitive modulation of pain

•Attend to pain vs. attend away

- •Perceive the pain as more intense vs. less intense
- •Perceive the pain as harmful vs. only a tactile sensation

PATIENT REPORT OF PAIN MEASURES

PRIOR TO SCANNING

Pain Rating Index

					· .			
		None	.e.,	Mild	100	Moderate	10	Severa Savera
4	Throbbing		1		2	~~	3	
1	Shooting		1		2		3	
1	Stabbing		1		2		3	
	Sharp		7		2	~	3	
ł	Cramping	\sim	1		2		3	
.a	Gnawing	- ~	1		2		3	
L	Hot-Burning		1		2		3	
1	Aching		1		2	\sim	3	
	Heavy		1	\sim	2		3	
	Tender		1		2	~	3	
¥	Splitting		1	~	2		3	
*	Tiring/Exhausting		1	~	2		3	
1	Sickening	~	. 1		2		3	
0	Fearful		1		2		3	
¥	Punishing/Cruel	$\overline{}$	1		2		3	

II. Present Pain Intensity (PPI)-Visual Analog Scale (VAS). Tick along scale below for

pain:	Worst
No	possible
pain	pain

PATIENT REPORT OF PAIN MEASURES

PRIOR TO SCANNING

AFTER SCANNING

Pain Rating Index

	The New York of the Annual State	None		Mile			1.S	SAME TO BREAK
4	Throbbing	Construction of the second	- 1	Para	2	V	3	
1	Shooting		1		2		3	
1	Stabbing		1		2		3	
 .a	Sharp		7		2	V	3	
	Cramping		1		2		3	
	Gnawing		1		2		3	
	Hot-Burning		1		2		3	\sim
	Aching		1		2	\sim	3	
	Heavy		1		2		3	
Ŧ	Tender		1		2	~	3	
	Splitting		1		2		3	
	Tiring/Exhausting		1	~	2		3	
1	Sickening		. 1		2		3	
1	Fearful		1		2		3	
¥	Punishing/Cruel		1		2		3	

II. Present Pain Intensity (PPI)-Visual Analog Scale (VAS). Tick along scale below for

pain:		orst
No		ossible
pain	1	ain

Pain Rating Index

Structures & States	None		Mild		Moderate	Severe
Throbbing		1	V	2	3	
Shooting		1	~	2	3	
Stabbing		1	~	2	3	
Sharp	5	1		2	3	
Cramping	v	1		2	3	
Gnawing	~	1		2	3	
Hot-Burning		1	~	2	3	
Aching		1		2	3	
Heavy	~	1		2	3.	
Tender	V	1		2	3	
Splitting	V	1		2	3	
Tiring/Exhausting		11	V	2	3	
Sickening		1		2	3	
Fearful	V	1		2	3	
Punishing/Cruel		1		2	3	

I. Present Pain Intensity (PPI)-Visual Analog Scale (VAS). Tick along scale below for

pain:		Worst
No		possible
pain	1	pain

CHANGE IN PAIN RATINGS FOLLOWING RTFMRI TRAINING IN CHRONIC PAIN PATIENTS

PATIENTS WHO LEARNED TO CONTROL RACC ACTIVATION SHOWED A CHANGE IN PAIN, OTHERS DID NOT

A CONTROL GROUP, TRAINED USING AUTONOMIC BIOFEEDBACK, DID NOT SHOW THE SAME CHANGES IN PAIN

MOTIVATIONS FOR NEUROIMAGING THERAPY IN CHRONIC PAIN TREATMENT

IMPLICATION

NON-Uses endogenousPHARMACOLOGICphysiological,
neurotransmitter systems

REVERSIBLE

Can be terminated if unsuccessful.

NON-INVASIVE

No physical intervention required.

PHYSICIAN'S OFFICE IMAGING MAY BECOME FEASIBLE Less expensive

RATIONALE

No drug-related side effects.

Potentially low risk.

No surgery.

Technology grows to meet need:

INTERFACE FOR CHRONIC PAIN PATIENTS

A Better View of Brain Disorders Science 313, 1377-1379 (8 Sept, 2006) Miller, G

CAN REAL TIME FMRI LEAD TO A NEW, MECHANISTICALLY-BASED, COMPUTER GUIDED FORM OF COGNITIVE INTERVENTION?

ROI TARGETS: (Two groups)

- **1.** rostral Anterior Cingulate Cortex
- 2. Training using rACC and bilateral insula

PROTOCOL: Training over 6 consecutive sessions, approximately 6 weeks

SUBJECT DISPLAY

WILL NEUROIMAGING THERAPY PRODUCE LONG-TERM DECREASES IN CHRONIC PAIN?

NOTE: Preliminary, Unpublished Data! No Control Group to Date Placebo Effects Are Likely

WILL NEUROIMAGING THERAPY PRODUCE LONG-TERM DECREASES IN CHRONIC PAIN?

NOTE: Preliminary, Unpublished Data! No Control Group to Date Placebo Effects Are Likely

COMPARISON OF EFFECT ACROSS TWO TRAINING SITES/SCANNERS

Comparison Across Training Sites (N=10/11)

NOTE: Preliminary, Unpublished Data! No Control Group to Date Placebo Effects Are Likely

CAN RTFMRI-BASED TRAINING BE USED IN SUBSTANCE ABUSE? PROTOCOL DETAIL

OVERVIEW OF DISPLAY TO SUBJECTS

	INCREASE 30s	RATE 20s	REST 30s	DECREASE 30s	RATE 20s	REST 30s
STIMULUS- INDUCED CRAVING TASK		Rate Your Craving Level Now			Rate Your Craving Level Now	
	INCREASE CRAVING		REST	DECREASE CRAVING		REST
SELF- INDUCED CRAVING TASK		Rate Your Craving Level Now			Rate Your Craving Level Now	
	INCREASE CRAVING		REST	DECREASE CRAVING		REST
RTFMRI TRAINING TASK	43 43 21 0 50 100s	Rate Your Craving Level Now	4301 101 101 100 100s	4 4 4 1 0 50 100s	Rate Your Craving Level Now	44 43 10 10 10 10 10 100s
	GRAPH UP		REST	GRAPH DOWN		REST

WE ARE ACTIVELY ENROLLING CHRONIC PAIN PATIENTS FOR OUR CURRENT TRIAL

THANK YOU...

SOME REFERENCES

Control over brain activation and pain learned by using real-time functional MRI. **Proceedings of the National Academy of Sciences** (2005) deCharms, R. C., Maeda, F., Glover, G. H., Ludlow, D., Pauly, J. M., Soneji, D., Gabrieli, J. D., and Mackey, S. C.

Learned regulation of spatially localized brain activation using real-time fMRI. NeuroImage (2004) 21, 436-443 deCharms, R. C., Christoff, K., Glover, G. H., Pauly, J. M., Whitfield, S., and Gabrieli, J. D.

Functional brain imaging using a blood oxygenation sensitive steady state. Magn Reson Med (2003) 50, 675-683 Miller, K. L., Hargreaves, B. A., Lee, J., Ress, D., deCharms, R. C., and Pauly, J. M.