Neural Mechanisms Linking Behavioral Dysregulation in Substance Abuse, Psychopathology and Stress

> Anthony A. Grace, Ph.D. Departments of Neuroscience, Psychiatry and Psychology University of Pittsburgh

Stress, Anxiety, and its consequences

Stress is a part of our everyday lives. But the impact of stress can have very different effects:

-Stress can lead to anxiety, that provides motivation and helps us to avoid reckless or dangerous activities

-However, when stress is experienced in excess, either in terms of intensity or duration, it can have deleterious consequences

-Depending on the individual, stress can lead to major psychiatric disorders, including drug abuse, post-traumatic stress disorder, depression, or suicide

-Stress is also a precipitating factor in disorders such as schizophrenia

We have found that stress can have very different effects on the dopamine system that correlate with its effects on activation or depression of responses

Stress can be defined in a number of ways depending on the experiment

A stressor can be noxious, it can be physiological, and it can be psychological, with each type of stressor affecting the system in common or unique ways.

How does a simple single noxious stimulus affect single dopamine neurons?

Single Footshock Stimuli Produce Excitation and Inhibition of DA Neuron Firing Depending on Location

In contrast, neurochemical studies show that stressors *increase* DA release in postsynaptic targets

However, this may be related to the type of DA neuron recording performed

In Contrast to Single Stimuli, Repeated Footshock Induces a Transient Increase in DA Neuron Population Activity Selectively in the Medial VTA

This is consistent with neurochemical studies of DA release in response to footshock

What other stress-related systems that affect DA neurons are affected by footshock?

Stimulation of the Basolateral Amygdala Also Drives Ventral Hippocampal Neuron Firing

The Ventral Hippocampus exerts unique effects on DA neuron activity

Activation of the *hippocampal-NAc pathway* increases DA neuron population activity, but does not affect burst firing

NMDA

Kyn

Inactivation of the Ventral Subiculum Prevents Repeated Footshock-Induced Activation of VTA DA Neuron Firing

DA Neuron Firing Pattern

Irregular Firing

Activation of the *pedunculopontine nucleus* increases DA neuron burst firing, but does not affect population activity

Regulation of Phasic DA Neuron Activity

> "silent" DA neuron inhibited by GABAergic input from VP

NMDA only affects depolarized, spontaneously firing DA neurons

Model:

By setting the baseline tonic discharge of dopamine neurons, the hippocampal subiculum (via the accumbens-ventral pallidum) controls the number of dopamine neurons that can be phasically activated by the PPTg

Therefore, the PPTg provides the "signal," and the ventral subiculum is the "gain" or the level of amplification of this signal

The ventral subiculum of the hippocampus plays a role in context-dependent processing, which sets the type of response that is appropriate with the current context or setting

The "gain" is a property of the context, and can be varied depending on the characteristics of the environment

Therefore repeated noxious stimuli increase the amplitude of phasic DA responses by increasing DA neuron population activity

Psychological stressors, particularly when severe, can also increase DA system responsivity via sensitization

Such stressors play a prominent role in drug abuse and across psychiatric disorders

Two Hours of Restraint Stress Increases Tonic DA Neuron Firing to Baseline

vSub Inactivation by TTX Restores Tonic DA Neuron Firing

vSub Inactivation by TTX Reverses Stress-Induced Sensitization to Amphetamine

Repeated Amphetamine Treatment, like Restraint Stress, Increases Tonic DA Neuron Firing

Amphetamine sensitization is also context-dependent, and cross-sensitizes with stress via the same neuronal substrates

Benign Context:

Ventral Subiculum

Restraint- or Amphetamine-induced Activation: DA **Behaviorally Salient** Pedunculopontine Stimulus Tegmentum Ventral Subiculum

Acute or repeated restraint stress as well as amphetamine sensitization therefore increases DA neuron responsivity by causing a hippocampal-dependent activation of DA neuron firing.

This activation could be related to stress disorders such as drug abuse and PTSD, in which the system is oriented towards increased response to stimuli

In contrast, following an acute stressor there is often an opposite effect induced; one of sustained attenuation of DA neuron activity

Effects of Chronic Cold Stress on VTA DA Neuron Activity

Chronic Cold Stress decreases DA neuron population activity primarily in reward-related medial VTA

Chronic Cold Stress Decreases Behavioral Response to Amphetamine

Chronic Cold Stress-Induced Attenuation:

Conclusions and Hypothesis:

These studies suggest that stress can affect DA transmission and behavior via distinct mechanisms:

Stressors that are behaviorally activating tend to increase DA neuron drive in a context-dependent manner, whereas those associated with depressed conditions attenuate DA neuron drive.

The population activity, or number of dopamine neurons firing, we propose reflects the responsivity of the DA system to external stimuli.

Acknowledgements

Ali Charara **Pauline Belujon** Pierangelo Cifelli Deanne Buffalari Chun-hui Chang **Cynthia Correll** Yijuan Du Samuel Ewing Stan Floresco Krysta Fox Mehdi Ghajarnia Kathryn Gill Yukiori Goto David Harden Jeffrey Hollerman Hank Jedema David Jentsch Antonieta Lavin Steve Laviolette

Dan Lodge Witek Lipski Michael Mana Holly Moore Eric Nisenbaum Patricio O'Donnell Shao-Pii Onn Vince McGinty Michele Pucak Meera Ramsooksing Heather Rose J. Amiel Rosenkranz Thibault Sesia Ian Smith Judy Thompson Chris Todd **Ornella** Valenti Anthony West

Collaborators:

Margarita Behrens, UCSD James Cook, UWM Susan Sesack, Univ. Pitt. Linda Rinaman, Univ. Pitt