Delineating Intrinsic Connectivity Networks for Emotional Salience Processing and Executive Control

Michael D. Greicius, MD Functional Imaging in Neuropsychiatric Disorders (FIND) Lab Stanford Center for Memory Disorders Department of Neurology and Neurological Sciences Stanford University School of Medicine

Overview

- Resting-state fMRI: Intrinsic connectivity networks
- Emotional salience and executive control networks
- Assigning putative functions to ICNs
- Inter-network interactions
- Implications for addiction research

Resting-State Functional Connectivity

- Brain activity continues in the absence of an externally-cued task
- Brain regions have spontaneous fluctuations in BOLD signal
- A brain region's "resting" BOLD signal timecourse can be used as the regressor

Resting Motor Cortex Connectivity

Motor Cortex Defined by *f*MRI

Spontaneous Correlations with Motor Cortex

Biswal, et al., Magn Reson Med, 1995

ROI-Derived Intrinsic Connectivity Networks

Motor: Xiong et al., 1999

Language: Hampson et al., 2002

Default Mode: Greicius et al., 2003

Independent Component Analysis in the Detection of Intrinsic Connectivity Networks

- Separates fMRI signal into independent spatial maps with associated timeseries
- Allows for removal of noisy components
- Reliably extracts several networks, en bloc, as independent components

Default-Mode Network Detected with ICA

15.00 10.00 5.00

1.18

2.67

4.15

5.63

7.11

8.59

10.07

11.55

13.03

14.51

15.99

17.47

3.18 -3.4

Beckmann et al., Philos Trans R Soc Lond, 2005

One Task Activation Network, Two ICNs

B ROI functional connectivity maps during undirected wakefulness

Seeley et al., J Neurosci, 2007

Replication in a Separate Sample Using ICA

Seeley et al., J Neurosci, 2007

Behavioral Double Dissociation

Seeley et al., J Neurosci, 2007

ECN Correlates with IQ

Song et al., Neuroimage, 2008

The Cognitive Control Network

△ Counting Stroop (Bush et al., Ref. 3) △ Counting Stroop (Bush et al., Ref. 17) ◆ Emotional Counting Stroop (Whalen et al., Ref. 18)

trends in Cognitive Sciences

Fig. 2. Meta-analysis of activations and deactivations during cognitive and emotional studies. Activations (a) and deactivations (b) are shown in 2-D spatial coordinates. The cognitive division is activated by Stroop and Stroop-like tasks divided attention tasks, and complex response selection tasks. It is deactivated (i.e. shows reduced blood flow or MR signal) by emotional tasks. The affective division is activated by tasks that relate to affective or emotional content, or symptom provocation. It is deactivated by cognitively demanding tasks. A direct comparison within the same subjects supports the cognitive versus affective division (blue diatriangle indicates the activation of the cognitive division during the cognitive Counting Stroop³. The same group of subjects activated the affective division (blue diamond) while performing the Emotional Counting Stroop¹⁸. Although matched normal controls activated the cognitive division during the Counting Stroop (yellow triangle), subjects with attention-deficit/hyperactivity disorder failed to activate the region¹⁷. Abbreviation: CC, corpus callosum.

Bush et al., Trends Cogn Sci, 2000

The Pain Network

Singer et al., Science 2004

The Turgidity Network

Turgidity-Correlated Activations

Arnow et al., Brain 2002

The Autonomic Nervous System Network

Blood pressure during arthimetic and exercise tasks (PET) Α

Critchley et at., J Physiol 2000

The Autonomic Nervous System Network

during

exercise

Sympathetic activity: LF power orthogonalized with respect to HF power

Sympathetic activity: HF power orthogonalized with respect to LF power

Relationship of sympathetic activity to cognitive and motor -related activity

> Low-frequency power Exercise tasks N-back tasks

Critchley et al., Brain 2003

The Autonomic Nervous System Network

Medial cerebral activity associated with autononmic arousal, error and conflict during Stroop task performance

Pupillary response during Stroop task

Critchley et al., Neuroimage 2005

Network-Based-Neurodegenerationer

Syndrome-specific regional atrophy patterns: patients vs. controls Atrophy max = seed ROI

amplitude

а

bvFTD

•

S7

R Ang

FI

Seeley et al., *Neuron*, 2009

Inter-Network Interactions

Left VLPFC Right VLPFC Right DLPFC

Greicius et al., PNAS, 2003

Inter-Network Interactions

Fransson, Hum Brain Mappp, 2005

Anti-Correlations at the Group Level (careful physio correction, no global scaling)

Chang and Glover, Neuroimage, 2010

Inter-Network Interactions in Dementia

A Salience Network

B Default Mode Network

bvFTD < HC

AD < HC

+15

Zhou et al., Brain, 2010

FIND Lab Parcellation (14 ICNs yield 90 ROIs)

y = 2

x = -30

Whole-Brain Functional Connectivity Matrix

Insular Lesions and Addiction

Navqi et al., Science, 2007

Salience Network and Cue-Induced Urges

Table 1. Functional imaging studies demonstrating activity in the insula during drug urges ^a								
Drug	Insula	OFC ^b	ACC	DLPFC	Amygdala	VS	HF	Refs
Cigarettes	L	L	L,R	L°	No activity	No activity	No activity	[129]
Cigarettes	L	R	No activity	L°	L,R	L,R	L,R	[130]
Cigarettes	L°,R°	L°,R°	L,R	L°,R°	L	No activity	No activity	[131]
Cigarettes	L°,R°	No activity	L°,R°	L°	No activity	No activity	No activity	[115]
Cigarettes	L,R	Noactivity	L°,R°	L°,R°	No activity	No activity	No activity	[132]
Cigarettes	R	L	L	R	No activity	No activity	No activity	[133]
Cigarettes	R°	R°	R°	R°	R°	R°	L°,R°	[134]
Cocaine	L	No activity	R	No activity	L,R	R	No activity	[135]
Cocaine	L°	L°	No activity	R°	L°	No activity	No activity	[136]
Cocaine	L°,R°	L°,R°	L	No activity	L,R	R	No activity	[137]
Cocaine	L,R°	L°,R°	No activity	[138]				
Cocaine	R	No activity	L	L,R	No activity	No activity	No activity	[139]
Cocaine	R	No activity	L,R	L	No activity	No activity	No activity	[140]
Alcohol	L,R	L°,R°	L°,R	No activity	No activity	L°,R	L	[141]
Alcohol	L,R	No activity	L	L	No activity	No activity	No activity	[142]
Heroin	L	L	L,R	No activity	No activity	No activity	No activity	[143]

^aAll are studies of cue-induced urges, except Ref. [134], which is a study of abstinence-induced urges.

^bAbbreviations: ACC, anterior cingulate cortex; DLPFC, dorsolateral prefrontal cortex; HF, hippocampal formation; L, left; OFC, orbitofrontal cortex; R, right; VS, ventral striatum.

^cIndicates correlation with self-reported urges. Note that activity in the insula is frequently correlated with subjective urges. Also note the paucity of activation in subcortical structures, which indicates that conscious urges mediated by the insula might be dissociable from processes mediated by these subcortical regions.

Naqvi and Bechara, Trends Neurosci, 2008

Network Interactions in Addiction

Koob and Volkow, Neuropsychopharmacology, 2010

Imaging ICNs in Addiction

- Brain can be segregated into a 14+ ICNs
- Several potential networks of interest in addiction
- Consider inter- as well as intra-network changes
- Different drugs may alter networks differentially
- Future studies: genetics, plasticity, pharmacology

Collaborators

<u>Stanford</u> Vinod Menon Bob Dougherty Gary Glover Jeske Damoiseaux Will Shirer <u>UCSF</u> Bruce Miller Bill Seeley Helen Zhou

Funding Support

The Dana Foundation The French Foundation NIH: NS073498

Reviews

Craig, *Nat Rev Neurosci*, 2002 Seeley et al., *Alzheimer Dis Assoc Disord*, 2007 Naqvi and Bechara, *Trends Neurosci*, 2008