Pain and Addiction:Can we actually see the relationships?Can we actually see the relationships?Jon-Kar Zubieta, M.D., Ph.D.July See the relationshipsPhil Jenkins Professor of PsychiatryAssociate ProfessorDepartments of Psychiatry, Radiology, and Neurosciences ProgramAssociate Research ProfessorMolecular and Behavioral Neuroscience Institute

The University of Michigan

Fig. 1. Means on the composite index of antisocial behavior as a function of MAOA activity and a childhood history of maltreatment (27). MAOA activity is the gene expression level associated with allelic variants of the functional promoter polymorphism, grouped into low and high activity; childhood maltreatment is grouped into 3 categories of increasing severity. The antisocial behavior composite is standardized (z score) to a M = 0 and SD = 1; group differences are interpretable in SD unit differences (d).

COMT val158met polymorphism

Mean Tridimensional Personality Questionnaire HA2 scores (\pm standard error) by catechol-O-methyltransferase (COMT) Val158Met genotype for Bethesda women (n = 75, P = 0.087) and Plains Indian women (n = 148, P = 0.031).

Enoch et al., 2003

Behavioral Risk Factors for Opiate Analgesic Requirements in Chronic Pain

- Previous or concurrent history of substance abuse
- Elements related to the *characteristics of pain* report:
 - Preoccupation with physical symptoms
 - Subjective lack of treatment efficacy
 - Higher levels of pain and higher variability of pain over time
- Elements related to *emotional functioning* during chronic pain:
 - Depression symptoms
 - Anxiety
 - Psychosocial distress
 - "Pain Catastrophizing" "a negative mental set brought to bear during actual or anticipated painful experience (Sullivan et al., 2004, Pavlin et al 2005)

Behavioral Risk Factors for Opiate Analgesic Requirements in Chronic Pain: Neurobiological Mechanisms?

- Higher levels of pain-associated disability, more negative emotional states:
 - Associated with lower levels of morphine analgesia (Burns and Bruehl 2005; Fillingim et al., 2005; Wasan et al., 2005)
 - Lower endogenous opioid system tone (as evidenced by challenges with the non-selctive opioid receptor antagonist naloxone) (Bruehl et al., 2004)
- Role of opiate-induced hyperalgesia ?

Distributed in pain regions but also "affective / motivational circuits" neuronal nuclei involved in the assessment of stimulus salience and cognitiveemotional integration.

CNS Inhibitory Controls

Mu Opioid Receptor-Mediated Neurotransmission

BP

µ-Opioid Receptor Quantification with PET

Tracer Transport

(rCBF x Tracer Extraction)

Incorporation to Specific Binding Sites

Mu Opioid Neurotransmission

- Experimental evidence (animal models and humans) and transgenic models implicate them in:
 - Endogenous opioid analgesia and effects of opiate analgesics
 - Stress responses and stress-induced analgesia
 - Regulation of affiliative behavior and responses to novelty
 - Regulation of amygdala and nucleus accumbens-mediated responses to salient stimuli, including drugs of abuse
 - Thought to mediate placebo effects during expectation of analgesia
- Direction of modulation is typically suppressive of the relevant response (e.g., pain, stress, anxiety, ...)
- Typically activated by stimuli that threatens the homeostasis of the organism (e.g., unpredictable stress, sustained, more rostral pain...)

Saline-Control

Previous Results

μ-Opioid Receptor Mediated Antinociception Differs in Men and Women

(Zubieta et al., J Neuroscience 22:5100, 2002)

THA NAC/ VP AMY

Sex Differences: Regulation by Estradiol

(Smith et al., J Neuroscience 26:5777-5785, 2006)

Parallel HPA and µ-Opioid System Activation

ACTH

μ-Opioid System Suppression of Sensory and Affective Qualities of a Pain Stressor

- During sustained painful stress, µ-opioid neurotransmission is activated to suppress responses
- This activation takes place in numerous regions (anterior cingulate, prefrontal cortex, insula, thalamus, ventral basal ganglia, amygdala, PAG)
- Some of these regions are involved in the perception and regulation of sensory aspects of pain (i.e., intensity and localization -thalamus, PAG-)
- ...But also in the regulation of stimulus salience and cognitive-emotional integration -anterior cingulate, insula, nucleus accumbens, ventral pallidum, amygdala-)

Effects of Drugs of Abuse on DA Neurotransmission

Basal Ganglia Dopamine and Pain

- In animal models, results equivocal depending on pain model (phasic, acute, or more sustained).
- Typically implicate D2 and not D1 receptors in the nigrostriatal pathway.
- Mesolimbic DA activated by more prolonged pain, not acute pain (pain as a stressor ?).
- Animal model data suggest an antinociceptive effect of dopamine in the ventral basal ganglia (blocked by D2 antagonists).
- In humans, however, D2 antagonists have been used in the treatment of chronic pain with success in RCT's. Interspecies differences?

Basal Ganglia Dopamine and Pain

- DA D2 receptor concentrations in humans ([¹¹C]raclopride and PET) in putamen inversely correlated with cutaneous pain thresholds in healthy subjects and in atypical facial pain (Hagelberg et al., 2002, Pertovaara et al., 2004; Martikainen et al., 2005).
- Reduced [¹⁸F]FDOPA uptake in idiopathic mouth burning syndrome, not in atypical facial pain (Jaaskelainen et al., 2001)
- Increases in putamen D2, but not D1 ([¹¹C]NNC-756) receptor concentrations in idiopathic mouth burning syndrome and atypical facial pain (Hagelberg et al., 2003)

Activation of DA D2 Neurotransmission During Sustained Pain: Healthy Controls

Overall Response: Baseline - Pain

Saline Control - Pain

(Baseline - Pain) -(Saline Control - Pain)

Correlations

• VAS Intensity, r = 0.72

• VAS Intensity, r = 0.79

• PANAS negative, r = 0.53

• PANAS fear, r = 0.45

(Scott et al., J Neuroscience 26:10789-10795, 2006)

Activation of DA D2 Neurotransmission During Sustained Pain: Healthy Controls

(Scott et al., J Neuroscience 26:10789-10795, 2006)

Monoamine-Opioid Interactions

Fr Cx Gg CPu Gg CPu

with [³H]DAMGO from a saline-treated control rat (left) and a cocaine-treated (30 mg/kg/day) rat (right). Cocaine treatment resulted in increased binding in the caudate putamen, nucleus accumbens, and cingulate cortex. Acb = nucleus accumbens; c = core region of the nucleus accumbens; Cg = cingulate cortex; CPu = caudate putamen; FrCx = frontal cortex; OT = olfactory tubercle; sh = shell region of the nucleus accumbens.

80

COMT Val¹⁵⁸Met Polymorphism: Hypothesized Effects

- Reduction in enkephalin mRNA
- Increase in µ-opioid receptor binding
- **PFCTX**, striatopallidal pathway
- Models: psychostimulant administration, D2 agonists
- Met¹⁵⁸met COMT alleles ?
 - Increase in enkephalin mRNA
- Reduction in µ-opioid receptor binding
- Models: 60HDA, D2 antagonists
- Val¹⁵⁸val COMT alleles ?

Zubieta et al., Science 299: 1240-1243, 2003

Psychophysiological responses: Correlations with COMT activity

COMT Enzyme Activity	High	Intermediate	Low	
Genotype	ValVal	Met/Val	Met/Met	
	(n = 3)	(n =22)	(n =4)	r
Age	24.7 ± 2.5	24.5 ± 2.1	24.0 ± 3.3	
Education (years)	17.3 ± 1.5	17.5 ± 2.3	17.8 ± 3.2	
Acute Pain (15 sec) VAS Intensity	50.0 ± 35.0	47.4 ± 28.0	47.5 ± 8.7	0.04
Sustained Pain (0-20 min) VAS	34.2 ± 6.6	37.3 ± 8.8	39.5 ± 7.3	- 0.15
Average Infusion rate (µl/min)				
0-10 min	72.3 ± 78.2	80.4 ± 54.9	45.3 ± 23.9	0.29
10-20 min	188.4 ± 60.6	149.7 ± 56.7	130.1 ± 67.7	0.36 *
Rating - Stimulus Ratio				
MPQ Sensory	11.1 ± 5.9	16.2 ± 8.6	25.9 ± 19.4	- 0.29
MPQ Affective	0.3 ± 0.5	2.6 ± 2.9	5.1 ± 7.2	- 0.32 †
MPQ Total	🌺 17.8 ± 11.5	25.6 ± 14.0	42.9 ± 37.8	- 0.24
PANAS Negative Affect (Pain)	2.1 ± 3.6	7.5 ± 8.5	16.0 ± 19.2	- 0.37 *

Dysregulation of Opioid Mechanisms in Chronic Pain

- Opioid receptor concentrations reduced in rheumatoid arthritis and trigeminal neuralgia in humans ([¹¹C]diphrenorphine and PET), reversed after 3 to 12 weeks of pain relief (Jones et al., 1994, 1999).
- Similar results in post-stroke pain and one case of pontine infarction (Willoch et al., 1999, 2004)
- Secondary to activation of endogenous opioid neurotransmission, receptor downregulation or both?
- Relationship with clinical pain report ?

Dysregulation of Opioid Mechanisms in Chronic Pain: Fibromyalgia

Р

- N = 11 women diagnosed with fibromyalgia
- N = 11 matched controls
- fMRI with thumb pressure
- PET with [¹¹C]carfentanil

L		R NAC	L AMY
size mm ³	82	208	257
Z	3.8	4.4	3.6
p-value	<0.0005	< 0.0005	<0.0005
%∆ BP	25±13	21±15	23±17

Harris et al., under review

Dysregulation of Opioid Mechanisms in Chronic Pain: Fibromyalgia

Conclusions

- Two neurochemical systems centrally implicated in the effects of opiates and drugs of abuse, the endogenous opioid/µ-opioid receptor and the dopaminergic/D2 receptor, are also involved in responses to sustained pain in humans.
 - Think of pain as a physical and emotional stressor
- Substantial interindividual variability is observed in the function of these systems at the level of pain report and affective responses to pain.
 - Subject to genetic and gonadal steroid influences
- Evidence of DA D2 and µ-opioid system dysregulation in various forms of chronic pain.
 - Reducing initial risk for opiate abuse in chronic pain patients ?
 - Effect of individual variability in chronic pain samples ?
 - Implications for opiate and other drug abuse risk not explored.

RADIOCHEMISTRY Michael A. Kilbourn, PhD

RADIOTRACER KINETIC MODELING Robert A. Koeppe, PhD

REPRODUCTIVE ENDOCRINOLOGY Yolanda R. Smith, MD, MS

NEUROENDOCRINOLOGY Elizabeth A. Young, MD

fMRI

Douglas **Noll**, PhD Luis **Hernandez**, PhD

STATISTICAL MODELS Thomas Nichols, PhD

WARPING METHODS Charles R. Meyer, PhD

The Team ...

GENOTYPING

David **Goldman**, MD Margit **Burmeister**, PhD

PAIN MODELS Christian S. Stohler, DDS, PhD

PROGRAMMING

Heng **Wong**, PhD **NURSING** Kathie **Singer**, RN Virginia M. **Weinberg**, RN, MS

JUNIOR FACULTY Mary M. Heitzeg, PhD Scott Langenecker, PhD Carol Persad, PhD Richard Harris, PhD POST-DOCTORAL FELLOWS

Alison Berent-Spillson, PhD David Hsu, PhD Tal Shafir, PhD Brian Mickey, MD (Research Track Resident) Yunhai Qiu, MD, PhD

> GRADUATE STUDENTS Tiffany M. Love David J. Scott Catherine Evans

RESEARCH ASSOCIATES

Christine **Egnatuk**, BS Wendy **Yau**, BS

... and the technologists of the PET Center and fMRI Laboratory

Supported by R01 DA 16423, R01 DA 022520, R01 AT 001415, R01 DE 12743